Wednesday, January 19, 2011

ATLAS OF CREATION -1

WHAT IS A FOSSIL?
In the broadest definition, a fossil is the remains of a living thing that lived long ago and that has survived down to the present day by being preserved under natural conditions. The fossils that come down to us are parts of an organism, or remains left behind when the living thing concerned was still alive (the latter are known as trace fossils.) They are formed when dead animals or plants are preserved before they completely decay and eventually become part of the earth's sedimentary rock. In order for fossilization to take place, the animal or plant concerned must be buried in a fairly rapid mannergenerally by being covered in a layer of silt. This is generally followed by a chemical process, during which preservation is ensured by means of mineral changes that take place in the original tissues.


A 50-MILLION-YEAR-OLD FROG FOSSIL
There exists no difference between this frog, alive 50 million years ago, and those of today.

Fossils are the most important evidence of the details of prehistoric life. From various regions of the world, hundreds of millions of fossils have been obtained, and they provide a window into the history and structure of life on Earth. Millions of fossils indicate that species appeared suddenly, fully-formed and with their complex structures, and have undergone no changes in the millions of years since. This is significant proof that life was brought into existence out of nothingin other words that it was created. Not a single fossil suggests that living things formed gradually, in other words that they evolved. The fossil specimens that evolutionists maintain as "intermediate fossils" are few in number, and the invalidity of these has been scientifically proven. At the same time, some of the specimens depicted as intermediate fossils have actually been revealed as fakes, demonstrating that Darwinists are in such a state of despair as to resort to fraud.
For the last 150 years or so, fossils from excavations carried out all over the world prove that fish have always been fish, insects have always been insects, birds have always been birds and reptiles have always been reptiles. Not one single fossil has pointed to any transition between living speciesin other words, from fish to amphibian or from reptile to bird. In short, the fossil record has definitively demolished the theory of evolution's basic claim, that species descended from one another by undergoing changes over long periods of time.


This birch fossil from the Paleocene period
(65.5 to 55 million years ago) found in Montana is three-dimensional.

In addition to the information that fossils provide concerning life forms, they also supply significant data regarding the history of the planet, such as how the movements of continental plates have altered the surface of the Earth and what kind of climatic changes took place in past eras.
Fossils have attracted the interest of researchers ever since the days of ancient Greece, although their study as a distinct branch of science began only in the middle of the 17th century. This followed the works of the researcher Robert Hooke (author of Micrographia, 1665, and Discourse of Earthquakes, 1668) and Niels Stensen (better known as Nicolai Steno). At the time when Hooke and Steno carried out their investigations, most thinkers did not believe that fossils were actually the remains of living things that had existed in the past. At the heart of the debate over whether fossils were the actual remains of living things lay the inability to explain where fossils were discovered, in terms of geological data. Fossils were frequently found in mountainous regions, although at the time, it was impossible to account for how a fish, for example, could have been fossilized in a stratum of rock so high above sea level. Just as Leonardo da Vinci had previously suggested, Steno maintained that sea levels must have declined over the course of history. Hooke, on the other hand, said that mountains have been formed as the result of warming inside the Earth and earthquakes in the oceanic plates.


A crab fossil that lived between 38 and 23 million years ago

Following the accounts of Hooke and Steno, who explained that fossils were actually the remains of living things that had once lived in the past, geology developed during the 18th and 19th centuries, and systematic fossil collecting and research began turning into a branch of science. The principles that Steno had laid out were followed in the classification and interpretation of fossils. From the 18th century on, the development of mining and increased railway construction permitted greater, more detailed investigation of what lay below the ground surface.
Modern geology revealed that the Earth's crust consisted of enormous sections known as "plates," which moved across the surface of the globe, carrying the continents and forming the oceans. The greater the movement of the plates, the more changes in the Earth's geography. Mountain ranges were the result of the collisions between very large plates. Changes and upthrusts in the Earth's geography that took place over very long periods of time also showed that strata that today form portions of mountains were once under water.

A 490- to 443-million-year-old starfish reveals that starfish have remained the same for hundreds of millions of years and have not evolved.A WINGED ANT THAT LIVED 20 TO 15 MILLION YEARS AGO.
Fossils trapped in amber by the hardening of resin also refute the theory of evolution.
Shrimp that lived 250 million and 70 million years ago are the same as those that live in our day. Shrimp that have remained unchanged for millions of years show that evolution has never occurred.


A fossil researcher working at the Ediacara Formation in Australia..

In this way, fossils seen in rock strata emerged as one major means of obtaining information about the different periods of the Earth's history. Geological information showed that the remains of living things preserved after death in sedimentsfossils, in other wordsrose up in rock strata laid down over enormously long periods of time. Some of the rocks in which fossils were found dated back hundreds of millions of years.
During these studies, it was observed that specific fossil species were found only in specific strata and certain types of rock. Consecutive rock strata were observed to contain their own fossil groups, which could be regarded as that particular layer's "signature." These "signature fossils" could vary, according to time, period, and area. For example, two different environmental conditions and kinds of sedimentsan ancient lake bed and a coral reef, for examplemight be encountered in the same fossil-bearing stratum belonging to the same geologic period. Alternatively, one might encounter the same fossil "signature" in two different rock beds many kilometers apart from one another. Through the information imparted by these remains, scientists determined the geological time frame that we still use today.


Fossil findings reveal that the imaginary beings in these drawings have never existed. Living beings appeared suddenly in fossil record, with all their features intact, and throughout their lives these species have undergone no changes whatsoever.
Darwinists claim that by undergoing minor changes, living beings evolve from one species to another over millions of years. According to this claim which is refuted by scientific findings, fish transformed into amphibians, and reptiles transformed into birds. This so-called transformation process, asserted to last for millions of years, should have left countless evidence in the fossil record. In other words, during their intense researches for the last hundred years, researchers should have uncovered many grotesque living beings such as half-fish half-lizard, half-spider half fly or half-lizard half-bird. However, although almost every stratum on Earth has been dug, not even a single fossil has been found that Darwinists can use as an evidence for their so-called transition. On the other hand, there are innumerable fossils showing that spiders were always spiders, flies were always flies, fish were always fish, crocodiles were always crocodiles, rabbits were always rabbits and birds were always birds. Hundreds of millions of fossils clearly show that living beings have not undergone evolution, but were created. Hundreds of millions of fossils prove that living beings did not evolve, but were created.


A satellite image of the Earth.
The Formation of Fossils


A wasp of 54 to 28 million years old, petrified in amber.

Following the death of a living thing, a fossil comes into being through the preservation of hard body components an animal leaves behind, such as bones, teeth, shell or nails. Fossils are generally thought of as parts of a plant or animal in a petrified state. However, fossils do not come into being only through petrifaction. Some have survived down to the present day without any impairment or decay of their structures, such as mammoths frozen inside ice or insects and small species of reptiles and invertebrates preserved in amber.


This dragonfly trapped in mud may one day become fossilized and will reach the future generations as evidence that evolution has never happened.

When a living thing dies, the soft tissues comprising its muscles and organs soon begin to decay under the effects of bacteria and environmental conditions. (In very rare occasions, such as in sub-zero cold or dry heat of deserts, decay does not take place.) The more resistant parts of the organism, usually mineral-containing parts such as the bones or teeth, can survive for longer periods of time, allowing them to undergo various physical and chemical processes. And these processes allow fossilization to take place. Therefore, most of those parts that become fossils are vertebrates' bones and teeth, shells of brachiopods and molluscs, the external skeletons of certain crustacean and trilobites, the general outlines of coral-like organisms and sponges, and the woody parts of plants.
An organism's surroundings and environmental conditions also play a major role in fossil formation. One can predict whether or not fossilization will take place on the basis of an organism's surroundings. For example, in terms of fossil formation, underwater environments are more advantageous than dry land ones.
The most common, widespread process of fossilization is known as permineralization or mineralization. During this process the organism is replaced by minerals in the liquid in the soil in which the body is immersed. During the process of mineralization, the following stages take place:
First, it is essential that by being covered in soil, mud or sand, the body of the dead organism should immediately be protected from contact with the air. Over the following months, new layers of sediments are laid down over the buried remains. These layers act as a thickening shield, protecting the animal's body from external agents and physical wear. Many more layers form, one atop the previous ones; and within a few hundred years the animal's remains lie several meters beneath the surface of the land or sea or lake bottom. As more time passes, structures such as the animal's bones, shell, scales or cartilage slowly begin their chemical breakdown. Underground waters begin to infiltrate these structures, and the dissolved minerals contained in these watersminerals such as calcite, pyrite, silica and iron, which are far more resistant to erosion and chemical breakdowngradually replace the chemicals in the tissues. Thus over the course of millions of years, these minerals give rise to an exact stone copy by replacing the tissues in the organism's body. Finally, the fossil comes to possess the exact shape and external form as the original organism, although now converted into stone.


1. Reef: Calcareous sea animals that form the reef.
2. Radiolarian: a type of microscopic plankton with skeletons of silica.
3. Two-shelled mollusk, shelled with calcium carbonate. In fossils, such hard organs may be preserved unchanged.
4. Graptolite: Fossils with organic skeletons that generally left traces on black shale. These creatures lived in groups.
5. Shark teeth: Bones and teeth consist largely of phosphorus, for which reason they are more resistant, compared with many soft-tissue organs.
6. Trace fossils: Fossils that are formed by traces seen on sediments.
7. Ammonite: A specimen whose shell had been replaced by iron pyrites and fossilized.
8. A petrified tree: In time, the tree's wooden cells are replaced by silica and fossilized.
9. Amber: Small organisms are preserved in resin.
10. Carbonized leaves: Plants transformed into carbon fibers.

Various situations may be encountered during mineralization:
1. If the skeleton is completely filled with liquid solution and breakdown takes place at a later stage, then the internal structure gets fossilized.


This fossil fish, 50 million years old, is evidence that fish have always remained as fish.

2. If the skeleton is totally replaced by a different mineral from the original, a complete copy of the shell emerges.

3. If an exact template or "mould" of the skeleton forms due to pressure, then the remains of the skeleton's external surface may remain.


A 20- to 15-million-year-old midge preserved in amber.

In plant fossils, on the other hand, it is carbonization caused by bacteria that applies. During the carbonization process, oxygen and nitrogen are replaced by carbon and hydrogen. Carbonization takes place by breaking down the tissue molecules by bacteria through changes in pressure and temperature or various chemical processes, causing chemical changes in the structure of the protein and cellulose in such a way that only carbon fibers remain. Other such organic materials as carbon dioxide, methane, hydrogen sulphate and water vapour disappear. This process gave rise to the natural coal beds that formed from the swamps that existed during the Carboniferous Period, 354 to 290 million years ago.
Fossils sometimes form when organisms are submerged in waters rich in calcium and get coated by minerals such as travertine. As the organism decays, it leaves behind traces of itself in the mineral bed.


At times, fragile organisms may also get fossilized under extraordinary conditions. Pictured is a starfish from the Jurassic period (206 to 144 million years ago). There is no difference whatsoever between this fossil and the starfish of our day.

The complete fossilization of a living thing's soft parts, even including fur, feathers or skin, is encountered only rarely. Remains of some soft-tissued life forms of the Precambrian Period (dating back 4.6 billion to 543 million years ago) have been very well preserved. There are also soft-tissue remains that permit internal structures from the Cambrian Period (543 to 490 million years ago), to be examined in addition to hard-tissue remains of living things right down to the present day. Fossil remains of animal fur and hairs preserved in amber, and fossil remains dating back 150 million years are other examples that permit detailed investigation. Mammoths compacted in Siberian ice packs or insects and reptiles trapped in amber in Baltic forests have also become fossilized together with their soft-tissue structures.
Fossils can vary considerably in terms of size, according to the type of organism preserved. Very different fossils have been obtained from the fossilized microorganisms to giant fossils from animals that lived together as groups or herds, in a communal lifestyle. One of the most striking examples of such giant fossils is the sponge reef in Italy. Resembling a giant hill, this reef is composed of 145-million-year-old limestone sponges that developed at the bottom of the ancient Sea of Tethys, and later rose up as the result of the movement of tectonic plates. It contains specimens of the life forms living in sponge reefs during the Triassic Period. The Burgess Shale in Canada and Chengjiang in China are among the largest fossil beds containing thousands of fossils from the Cambrian Period. The amber beds in the Dominican Republic and along the western shores of the Baltic Sea are other major sources of fossil insects. The Green River fossil beds in the U.S. state of Wyoming, the White River fossil beds in Central America, the Eichstatt beds in Germany and the Hajoula fossil beds in Lebanon are other examples that can be cited.

The skin and scales of this fish from the Triassic Period (250 to 203 million years ago) are fossilized with all their details intact. This sample reveals that fish had
the same scale structure 250 million years ago.

THE GREATEST SPONGE REEF
ON EARTH
This sponge reef of 145 million years old is a trace of the Tethys Ocean floor. The sponges of our day are no different from those that make up the hill. These sponges make it clear that they have not undergone any evolution.

No comments: